
porch(1)
It's not what you expect(1)

By: Kyle Evans

Note on Pronunciation

- Originally (orch)estrator - because it orchestrated a program via a tty
- Rust lib of the same name announced in the interim
- Renamed to porch to disambiguate - (p)rogram (orch)estrator

whoami

- FreeBSD Engineering Manager @ Klara, Inc
- FreeBSD src committer since 2017, some relevant work:

- lualoader (learned lua here - 2018)
- Pushed for flua [2019]
- Rewrote makesyscalls.sh (sed|awk beauty) [2019, fixed in

2024]
- Rewrote makeman.sh [2025]
- Stuff

- Not good at pronouncing things
- Not good at producing diagrams

http://makesyscalls.sh
http://makeman.sh

1. Motivation
a. Relevant TTY concepts
b. What I wanted
c. What is expect(1)?
d. Testing challenges

2. Design
a. Overview
b. Scripted mode
c. "Direct" execution mode
d. Scripted vs. Direct

3. Other Features
a. porchgen(1)
b. rporch(1)
c. porchfuzz(1)?

4. Examples

Motivation

Relevant TTY concepts

- pts(4), pty(3)
- Commonly available functionality amongst POSIX-y systems, pseudo-terminal

driver
- Software-driven control-side to mimic a user

- Canonicalization
- Input pre-processed by the TTY layer
- Line splitting applied at read(2) time
- CEOF (^D by default) terminates a line or signals EOF with no line

- PR 276220: Premature EOF when read(2) one byte short of VEOF marker
- FIONREAD ioctl

- Peek how many bytes to read
- With canonicalization applied, # bytes in next line only ("immediately available")

- Multiple lines may be present at currently canonicalized marker

https://bugs.freebsd.org/276220

What I wanted

- Tests for the tty layer
- Botched EOF handling with perfect buffer size (PR

276220)
- Canonicalization corner cases (kind of a philosophical

problem – canonicalize at read time, or write time?)
- FIONREAD consistency

- Basic program orchestration
- Potential for other interactive program testing

https://bugs.freebsd.org/276220
https://bugs.freebsd.org/276220

What is expect(1)?

- "Programmed dialog with interactive programs"
- Tcl
- Why not use it?

- Complex (needs to handle more use cases)
- Not a good fit for what I needed
- Public Domain

Testing challenges

- Avoiding racing a read(2) without requiring ptrace(2)
- Some test cases tedious to generate (a lot of input text)
- Want an easy way to send ctrl sequences without

thinking about it
- ^C, no magic numbers please (readability)

- Want stty manipulation (e.g., disable canonicalization)

Design

Overview

- Scripted with Lua (5.3+ compatible)
- Features a scripted mode, as well as a 'direct execution' mode (exposed via

lua lib)
- Portable

- FreeBSD/macOS/Linux tested regularly via Cirrus and GitHub Actions
- NetBSD/OpenBSD solutions welcome, currently verified manually

pre-release
- NetBSD 10.0+ for realpath(1) use in test suite
- OpenBSD and NetBSD both fail one minor test due to missing `env -S`

(running porch as script interpreter, filename goes to -f arg)

Execution Flow - User Model

spawn

write

match

eof

Implicit release

Process
Hold

Execution Flow - Internals

spawn() Hold Release
(explicit/implicit)

RunClose
(EOF/Script exit)

SIGTERM
(Previously SIGINT)

Wait
(5 second timeout)

SIGKILLAs needed

Overview - Process Configuration

Process

- match() timeout
- signals masked and

ignored (until release)
- write speed (rate)

Terminal

- termios settings (cflag,
iflag, lflag, oflag, cc)

- size

Scripted mode

- "orch" scripts
- Very limited environment
- Series of actions that get queued
- One process at a time
- spawn() implicitly closes any open process, kills it
- End of script closes an open process, kills it

Scripted mode - actions

- cfg (write delay)
- enqueue (scheduled callback)
- eof
- exec
- exit
- fail (error handler callback)
- flush
- getenv/setenv
- log (i/o transcript)
- matcher (lua, plain, posix (EREs))
- pipe
- stty
- raw
- release

- sigblock
- sigcatch
- sigclear
- sigignore
- signal
- sigreset
- sigunblock
- sleep (seconds)
- spawn
- write / match / one (match

multiplexer)

Scripted mode - match / one

- match: basic pattern match
- Can match multiple patterns
- Earliest, longest match wins

- one: match multiplexer
- Takes a callback
- Callback should consist of a series of match() actions in order of

precedence
- First one to match wins

- one came first, match grew multiple patterns later; one might get
deprecated

Scripted mode - exec

- Execute arbitrary command
- Allows user to collect output from said command as necessary
- Termination callback that we supply a wait status to
- Potential use-cases:

- Testing for file existence
- Kicking off non-interactive scripts that are necessary

Scripted mode - pipe

- Pipe input in from elsewhere
- io.popen() the specified command
- Read line-by-line, optionally applying a filter
- Write line to process
- Potential use-cases:

- Extracting externally stored secrets
- Fetching data from disk (io not available in the sandbox)

Scripted mode - signals

- Inspired by UNIX conformance requirements
- Testing applications that will send output in response to a signal, rather than

exiting
- Collect a WaitStatus with eof() in case we need to check if the signal terminated

the application properly
- Borderline out-of-scope of porch's original purpose, but useful functionality to

have
- Signal mask configuration

- sigblock
- sigclear
- sigunblock

- Configuration of signals caught/ignored
- sigcatch
- sigignore
- sigreset (also clears the signal mask)

Scripted mode - debuggability

- fail() callback takes the remainder of the unmatched
buffer as a param

- Without a fail() handler, prints out some diagnostics
about the action we were trying to run

- debug() / hexdump() for outputting

"Direct" execution mode

- lib interface to some other lua script
- Exposes run_script() to run an orch script
- Exposes porch.spawn() to spawn a process
- Retains signal and terminal configuration

functionality (adds
sigis{blocked,ignored,caught,unblocked} functions to
check the current status)

"Direct" execution mode - expected usage

- porch.spawn() returns a Process object
- Returned Process has most of the scripted actions

defined on it
- No "one" action, though! Only multi-match

- write/match to drive the Process to completion
- Multiple processes could be spawned

Scripted vs. Direct

- Scripted intended primarily for testing things
- Direct intended for arbitrary use
- Prefer to to keep built-in functionality to a minimum,

with other interfaces wrapping the lib as needed
- e.g., providing user interaction

Other Features

porchgen(1)

- Launches program
- Proxies output to stdout
- On user input:

- Generates match/write statements
- Passes input through to the application

- Leaves some previous match context just in case

rporch(1)

- Just another porch(1) executor
- Script is executed locally, as usual
- spawn() commands are executed via the rsh

program, specified either via $PORCH_RSH in the
environment or as an argument to -e, defaults to ssh

- Does word-splitting to allow arguments to rsh
without requiring a wrapper script

porchfuzz(1)?

- Not currently implemented
- Fuzz-testing application input handling
- Unsure of best approach

- Fuzz every input prompt
- Fuzz specific input prompt
- Combination of the two?

- Unsure of how to implement an effective fuzzer like this
- e.g., no instrumentation/metrics to gauge whether a mutation was useful

or not

Examples

Example: nc(1)

Example: multi-match (cat)

Example: parameterized tests

Future Work

- Writing more tests for interactive stuff in base
- tty behavior
- tee(1) (SIGINT handling, more for simplicity)

- libporch (+ python interface)
- porchfuzz(1)

Questions?
https://git.kevans.dev/kevans/porch

https://github.com/kevans91/porch
(public-facing mirror)

kevans@FreeBSD.org

