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Note on Pronunciation

- Originally (orch)estrator - because it orchestrated a program via a tty
- Rust lib of the same name announced in the interim
- Renamed to porch to disambiguate - (p)rogram (orch)estrator



whoami

- FreeBSD Engineering Manager @ Klara, Inc
- FreeBSD src committer since 2017, some relevant work:

- lualoader (learned lua here - 2018)
- Pushed for flua [2019]
- Rewrote makesyscalls.sh (sed|awk beauty) [2019, fixed in 

2024]
- Rewrote makeman.sh [2025]
- Stuff

- Not good at pronouncing things
- Not good at producing diagrams

http://makesyscalls.sh
http://makeman.sh
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Motivation



Relevant TTY concepts

- pts(4), pty(3)
- Commonly available functionality amongst POSIX-y systems, pseudo-terminal 

driver
- Software-driven control-side to mimic a user

- Canonicalization
- Input pre-processed by the TTY layer
- Line splitting applied at read(2) time
- CEOF (^D by default) terminates a line or signals EOF with no line

- PR 276220: Premature EOF when read(2) one byte short of VEOF marker
- FIONREAD ioctl

- Peek how many bytes to read
- With canonicalization applied, # bytes in next line only ("immediately available")

- Multiple lines may be present at currently canonicalized marker

https://bugs.freebsd.org/276220


What I wanted

- Tests for the tty layer
- Botched EOF handling with perfect buffer size (PR 

276220)
- Canonicalization corner cases (kind of a philosophical 

problem – canonicalize at read time, or write time?)
- FIONREAD consistency

- Basic program orchestration
- Potential for other interactive program testing

https://bugs.freebsd.org/276220
https://bugs.freebsd.org/276220


What is expect(1)?

- "Programmed dialog with interactive programs"
- Tcl
- Why not use it?

- Complex (needs to handle more use cases)
- Not a good fit for what I needed
- Public Domain



Testing challenges

- Avoiding racing a read(2) without requiring ptrace(2)
- Some test cases tedious to generate (a lot of input text)
- Want an easy way to send ctrl sequences without 

thinking about it
- ^C, no magic numbers please (readability)

- Want stty manipulation (e.g., disable canonicalization)



Design



Overview

- Scripted with Lua (5.3+ compatible)
- Features a scripted mode, as well as a 'direct execution' mode (exposed via 

lua lib)
- Portable

- FreeBSD/macOS/Linux tested regularly via Cirrus and GitHub Actions
- NetBSD/OpenBSD solutions welcome, currently verified manually 

pre-release
- NetBSD 10.0+ for realpath(1) use in test suite
- OpenBSD and NetBSD both fail one minor test due to missing `env -S` 

(running porch as script interpreter, filename goes to -f arg)



Execution Flow - User Model

spawn

write

match

eof

Implicit release

Process 
Hold



Execution Flow - Internals

spawn() Hold Release
(explicit/implicit)

RunClose
(EOF/Script exit)

SIGTERM
(Previously SIGINT)

Wait
(5 second timeout)

SIGKILLAs needed



Overview - Process Configuration

Process

- match() timeout
- signals masked and 

ignored (until release)
- write speed (rate) 

Terminal

- termios settings (cflag, 
iflag, lflag, oflag, cc)

- size



Scripted mode

- "orch" scripts
- Very limited environment
- Series of actions that get queued
- One process at a time
- spawn() implicitly closes any open process, kills it
- End of script closes an open process, kills it



Scripted mode - actions

- cfg (write delay)
- enqueue (scheduled callback)
- eof
- exec
- exit
- fail (error handler callback)
- flush
- getenv/setenv
- log (i/o transcript)
- matcher (lua, plain, posix (EREs))
- pipe
- stty
- raw
- release

- sigblock
- sigcatch
- sigclear
- sigignore
- signal
- sigreset
- sigunblock
- sleep (seconds)
- spawn
- write / match / one (match 

multiplexer)



Scripted mode - match / one

- match: basic pattern match
- Can match multiple patterns
- Earliest, longest match wins

- one: match multiplexer
- Takes a callback
- Callback should consist of a series of match() actions in order of 

precedence
- First one to match wins

- one came first, match grew multiple patterns later; one might get 
deprecated



Scripted mode - exec

- Execute arbitrary command
- Allows user to collect output from said command as necessary
- Termination callback that we supply a wait status to
- Potential use-cases:

- Testing for file existence
- Kicking off non-interactive scripts that are necessary



Scripted mode - pipe

- Pipe input in from elsewhere
- io.popen() the specified command
- Read line-by-line, optionally applying a filter
- Write line to process
- Potential use-cases:

- Extracting externally stored secrets
- Fetching data from disk (io not available in the sandbox)



Scripted mode - signals

- Inspired by UNIX conformance requirements
- Testing applications that will send output in response to a signal, rather than 

exiting
- Collect a WaitStatus with eof() in case we need to check if the signal terminated 

the application properly
- Borderline out-of-scope of porch's original purpose, but useful functionality to 

have
- Signal mask configuration

- sigblock
- sigclear
- sigunblock

- Configuration of signals caught/ignored
- sigcatch
- sigignore
- sigreset (also clears the signal mask)



Scripted mode - debuggability

- fail() callback takes the remainder of the unmatched 
buffer as a param

- Without a fail() handler, prints out some diagnostics 
about the action we were trying to run

- debug() / hexdump() for outputting



"Direct" execution mode

- lib interface to some other lua script
- Exposes run_script() to run an orch script
- Exposes porch.spawn() to spawn a process
- Retains signal and terminal configuration 

functionality (adds 
sigis{blocked,ignored,caught,unblocked} functions to 
check the current status)



"Direct" execution mode - expected usage

- porch.spawn() returns a Process object
- Returned Process has most of the scripted actions 

defined on it
- No "one" action, though! Only multi-match

- write/match to drive the Process to completion
- Multiple processes could be spawned



Scripted vs. Direct

- Scripted intended primarily for testing things
- Direct intended for arbitrary use
- Prefer to to keep built-in functionality to a minimum, 

with other interfaces wrapping the lib as needed
- e.g., providing user interaction



Other Features



porchgen(1)

- Launches program
- Proxies output to stdout
- On user input:

- Generates match/write statements
- Passes input through to the application

- Leaves some previous match context just in case



rporch(1)

- Just another porch(1) executor
- Script is executed locally, as usual
- spawn() commands are executed via the rsh 

program, specified either via $PORCH_RSH in the 
environment or as an argument to -e, defaults to ssh

- Does word-splitting to allow arguments to rsh 
without requiring a wrapper script



porchfuzz(1)?

- Not currently implemented
- Fuzz-testing application input handling
- Unsure of best approach

- Fuzz every input prompt
- Fuzz specific input prompt
- Combination of the two?

- Unsure of how to implement an effective fuzzer like this
- e.g., no instrumentation/metrics to gauge whether a mutation was useful 

or not



Examples



Example: nc(1)



Example: multi-match (cat)



Example: parameterized tests



Future Work

- Writing more tests for interactive stuff in base
- tty behavior
- tee(1) (SIGINT handling, more for simplicity)

- libporch (+ python interface)  
- porchfuzz(1)



Questions?
https://git.kevans.dev/kevans/porch

https://github.com/kevans91/porch
(public-facing mirror)

kevans@FreeBSD.org


